The agonistic adrenal: melatonin elicits female aggression via regulation of adrenal androgens.
نویسندگان
چکیده
Classic findings have demonstrated an important role for sex steroids as regulators of aggression, but this relationship is lacking within some environmental contexts. In mammals and birds, the adrenal androgen dehydroepiandrosterone (DHEA), a non-gonadal precursor of biologically active steroids, has been linked to aggression. Although females, like males, use aggression when competing for limited resources, the mechanisms underlying female aggression remain understudied. Here, we propose a previously undescribed endocrine mechanism regulating female aggression via direct action of the pineal hormone melatonin on adrenal androgens. We examined this in a solitary hamster species, Phodopus sungorus, in which both sexes are highly territorial across the seasons, and display increased aggression concomitant with decreased serum levels of sex steroids in short 'winter-like' days. Short- but not long-day females had increased adrenal DHEA responsiveness co-occurring with morphological changes in the adrenal gland. Further, serum DHEA and total adrenal DHEA content were elevated in short days. Lastly, melatonin increased DHEA and aggression and stimulated DHEA release from cultured adrenals. Collectively, these findings demonstrate that DHEA is a key peripheral regulator of aggression and that melatonin coordinates a 'seasonal switch' from gonadal to adrenal regulation of aggression by direct action on the adrenal glands.
منابع مشابه
Adrenal hormones mediate melatonin-induced increases in aggression in male Siberian hamsters (Phodopus sungorus).
Among the suite of seasonal adaptations displayed by nontropical rodents, some species demonstrate increased territorial aggression in short compared with long day lengths despite basal levels of testosterone. The precise physiological mechanisms mediating seasonal changes in aggression, however, remain largely unknown. The goal of the present study was to examine the role of melatonin, as well...
متن کاملNeural Androgen Synthesis and Aggression: Insights From a Seasonally Breeding Rodent
Aggression is an essential social behavior that promotes survival and reproductive fitness across animal systems. While research on the neuroendocrine mechanisms underlying this complex behavior has traditionally focused on the classic neuroendocrine model, in which circulating gonadal steroids are transported to the brain and directly mediate neural circuits relevant to aggression, recent stud...
متن کاملAdrenal simple cyst in a young female patient: A case report
Introduction: Adrenal gland cysts with variable symptoms are rare cases of over-kidney clinical conditions. Adrenal cysts are accidentally identified, which is referred to as incidentaloma. Adrenal cysts are non-specific and show radiological findings and Detection of these cysts is usually random. In this article, a patient with a simple adrenal cyst is introduced Case presentation: The p...
متن کاملAggressive encounters differentially affect serum dehydroepiandrosterone and testosterone concentrations in male Siberian hamsters (Phodopus sungorus).
The gonadal hormone testosterone (T) regulates aggression across a wide range of vertebrate species. Recent evidence suggests that the adrenal prohormone dehydroepiandrosterone (DHEA) may also play an important role in regulating aggression. DHEA can be converted into active sex steroids, such as T and estradiol (E(2)), within the brain. Previous studies show that circulating DHEA levels displa...
متن کاملPhotoperiod Regulates Corticosterone Rhythms by Altered Adrenal Sensitivity via Melatonin-Independent Mechanisms in Fischer 344 Rats and C57BL/6J Mice
Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 282 1819 شماره
صفحات -
تاریخ انتشار 2015